Oxygen deprivation-induced injury to isolated rabbit kidney tubules.
نویسنده
چکیده
The utility of freshly isolated suspensions of rabbit tubules enriched in proximal segments for studying the pathogenesis of oxygen deprivation-induced renal tubular cell injury was evaluated. Oxygenated control preparations exhibited very good stability of critical cell injury-related metabolic parameters including oxygen consumption, cell cation homeostasis, and adenine nucleotide metabolism for periods in excess of 2 h. Highly reproducible models of oxygen deprivation-induced injury and recovery were developed and alterations of injury-related metabolic parameters in these models were characterized in detail. When oxygen deprivation was produced under hypoxic conditions, tubules sustained widespread lethal cell injury and associated metabolic alterations within 15-30 min. However, when oxygen deprivation was produced under simulated ischemic conditions, tubules tolerated 30-60 min with only moderate amounts of lethal cell injury occurring, a situation similar to that seen with ischemia in vivo. Like ischemia in vivo, simulated ischemia in vitro was characterized by a fall in pH during oxygen deprivation. No such fall in pH occurred in the hypoxic model. To test whether this fall in pH could contribute to the protection seen during simulated ischemia in vitro, tubules were subjected to hypoxia at medium pHs ranging from 7.45 to 6.41. Striking protection from hypoxic injury was seen as pH was reduced with maximal protection occurring in tubules made hypoxic at pHs below 7.0. Measurements of injury-associated metabolic parameters suggested that the protective effect of reduced pH may be mediated by pH-induced alterations of tubule cell Ca++ metabolism. This study has, thus, defined and characterized in detail a new and extremely versatile model system for the study of oxygen deprivation-induced cell injury in the kidney and has established that pH alterations play a major role in modulating such injury.
منابع مشابه
Adenine nucleotide metabolism by isolated kidney tubules during oxygen deprivation.
Suspensions enriched in isolated rabbit proximal tubules were subjected to varying degrees of oxygen deprivation-induced injury by incubating them under hypoxic conditions at pH 7.4 or pH 6.6 or under high density pelleted conditions and adenine nucleotide degradation was characterized. The major metabolite was hypoxanthine. Its levels increased with the extent of irreversible injury. It was no...
متن کاملCytoprotective effects of glycine and glutathione against hypoxic injury to renal tubules.
Roles for both the tripeptide, GSH, and individual amino acids in modifying the cellular response to oxygen deprivation-induced injury have been suggested by prior work in kidney and other tissues, but the precise interrelationships have not been clearly defined. We have studied the effects of GSH, its component amino acids, and related compounds on the behavior of isolated renal proximal tubul...
متن کاملPioglitazone alleviates oxygen and glucose deprivation-induced injury by up-regulation of miR-454 in H9c2 cells
Objective(s): Pioglitazone, an anti-diabetic agent, has been widely used to treat type II diabetes. However, the effect of pioglitazone on myocardial ischemia reperfusion injury (MIRI) is still unclear. Herein, the objective of this study is to learn about the regulation and mechanism of pioglitazone effects on oxygen glucose deprivation (OGD)-induced myocardial cell injury.Materials and Method...
متن کاملDisparate mechanisms for hypoxic cell injury in different nephron segments. Studies in the isolated perfused rat kidney.
Hypoxic injury was evaluated morphologically in the proximal tubule and in the medullary thick ascending limb of isolated rat kidneys perfused for 90 min without O2 or with various metabolic inhibitors. Inhibition of mitochondrial respiration (with rotenone, antimycin, oligomycin) or of intermediary metabolism (with monofluoroacetate, malonate, 2-deoxyglucose) caused reduction in renal oxygen c...
متن کاملNimodipine Protects PC12 Cells against Oxygen-Glucose Deprivation
The protective effect of a L-type calcium channel blocker, nimodipine, on cell injury induced by oxygen-glucose deprivation (OGD) in PC12 cells was investigated. PC12 cells were exposed to in-vitro oxygen-glucose deprivation (30 minutes and 60 minutes respectively) in the presence or absence of nimodipine (10mM/L) in three different time schedules (pre-24h, pre-3h and concurrently). Cellular vi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The Journal of clinical investigation
دوره 76 3 شماره
صفحات -
تاریخ انتشار 1985